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Cuarrer L.

1. I PrROPOSE in these pages to prove the principal theorems of dynamics in a manner
which appears to me both simpler and more methodical than that in which they are
generally proved; and I believe that I shall be able, by applying a few conceptions
which spring naturally from the principles of higher algebra and statics, to give a clear
interpretation to most of the more complicated formulw® in dynamics, as well as to the
several analytical steps which lead to those formule.

2. There are many reasons why the diagonal AD, which is constructed on the straight
lines AB, AC, should be considered as the sum of those two lines. Those reasons may
be found developed in DE MoreaN’s ¢ Double Algebra,” in WARREN ¢ On Imaginary
Quantities,” and in the Tract of BENyAMIN GoMPERTZ ¢ On Imaginary Quantities.”

I shall therefore call AD (AD being the diagonal of the parallelogram constructed on
AB and AC) the complete sum of AB and AC, and the two lines AB and AC will be
called the components of AD. Moreover, denoting AB, AC, AD by P, Q, R respectively,
I shall express their relation to one another by the equation

R=(P)+(Q).

I shall likewise denote by (—Q) a line equal and opposite to Q, and define (P)—(Q)
to be the same as (P)4(—Q), calling it the complete difference of P and Q.

All lines which have the same length and direction will be considered as equal to one
another, so that any line is equivalent to a line through the origin having the same
length and direction.

8. It evidently follows from the above definitions, that the complete sum of AB and
BC is AC, and the complete difference of AB and AC is BC.

4. Suppose now Q to represent a line which varies with the time ¢ both in length and
direction. The complete difference of the two consecutive values of Qafter an increment
of time A¢ may be called the complete increment of Q, and may be denoted by A(Q).
Moreover, if we divide the length of A(Q) by A?, and take the limit of that ratio, then
the line which has that limit for its length, and which has for its direction the direction
of A(Q), when At diminishes without limit, will be called the complete differential
coefficient of Q, and will be denoted by D,(Q).

5 Ttwill be sometimes found convenient to denote a line of length », which is parallel
or perpendicular to a line P, by (¢ || toP) or (r " to P). Moreover, if n represent a
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470 MR. A. COHEN ON THE DIFFERENTIAL COEFFICIENTS

numerical quantity, then #P may be used to denote a line which is in the direction of
P, and whose length bears to that of P the ratio of n to 1.

6. The following Lemmas, which will be of constant use, are all but self-evident :—

I If R=(P)—(Q), then (R)—(P)4(Q)==0. Inshort, the ordinary rule of signs holds
good.

IL. (#P)4(nQ)=n{(P)+(Q)}.

IIT. The projection on any line or plane of the complete sum or difference of two
lines is equal to the sum or difference of their respective projections on the line or plane.

7. Whenever there is no risk of any mistake, the brackets may be omitted in the above
and similar formulee, and the complete sum or difference of lines may be spoken of simply
as their sum or difference. .

‘What has been hitherto said may be of course extended to all magnitudes whatsoever
which can be adequately represented by straight lines, such as forces, velocities, axes of
couples, axes of rotation, and accelerations, &c.

8. The application which can be made in dynamics of this conception of the
complete differential coefficient of a line, will become at once apparent from the follow-
ing considerations. .

Suppose a particle to be moving from A to B. Let O be any fixed point. Then the
particle’s velocity is, according to its very definition, represented in

B
magnitude and direction by the limit of % But AB is the com- A

0 ‘A
plete difference of O B and O A, or the complete increment of the

radius vector O A, and therefore the velocity, being the limit of I—XA——]?, is the complete

differential coefficient of the radius vector.

In the next place let O A and O B in the last figure represent in magnitude and direc-
tion the successive velocities of a particle at times ¢ and ¢+ Af respectively. Then, since
OB=(0A)+4(AB), it follows that, if with the velocity OA we compound the velocity
AB, we shall obtain the velocity OB, and therefore the particle’s acceleration is repre-

sented by the limit of %?, or by the complete differential coefficient of the velocity OA.

Hence we have the following proposition :—

If a particle’s velocity and acceleration be represented by straight lines, the velocity
will be represented by the complete differential coefficient of the radius vector drawn
from a fixed point to the particle, and the acceleration will be represented by the complete
differential coefficient of the velocity. Or more briefly, the velocity is the complete dif-
ferential cogfficient of the radius vector, and the acceleration is the complete differential
coeffficient of the velocity, and is therefore the second complete differential cogfficient of the
radius vector. So that if R denote the radius vector, and V and F denote respectively
the velocity and acceleration, we have

V=D(R), F=D(V)=DiR).
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9. Such then being the connexion which exists between the differential coefficient ot
the radius vector and the velocity and acceleration of a particle, I will proceed to prove
some of the principal propositions concerning the differential coefficients of lines, and to
apply them to the dynamics, or rather the kinematics of a particle.

The first proposition is the following :—

If P, Q, R represent straight lines, and if we have

P)£(Q)=R,
D(P)+D(Q)=D(R).

For let P, Q, R after an interval of time A¢ become P/, Q, R respectively, then we
have

then

(P)£(Q)=R,

and therefore, by Lemma I. of section 6, it follows that
{(P)—(P) £{(Q)—(Q} =(R)—(R),
A(P)£A(Q)=A(R).

Therefore by Lemma II. of section 6, we have

(50) (4) =42

or

and taking the limit of both sides of this equation, we obtain
D,(P)+D,(Q)=D(R).
Similarly it may be shown that
D,{(P)£(Q)+(R)} =D(P)+D(Q)LD(R).
Moreover, denoting the second complete differential coefficient by D3, it follows that
Di{(P)E£(Q)x(R); =D, {D(P)£D(Q)ED(R)}
=D}P)+Dj(Q)+Di(R).
10. Suppose now a line Q to have Q,, Q,, Q, for its components parallel to the axes
of coordinates Oz, Oy, Oz; it is evident from Lemma IIL of section 6, that

Q=(Q.)+(Q)+(Q.).
1t follows, therefore, from the preceding section, that

D(Q)=D(Q)+D(Q)+D(Q,) . . . . . . . (L)
D¥Q)=DQ,)+D¥Q,)+D¥Q.). . . . . . . . (IL)

These equations are true whether the axes of coordinates are fixed or move. But
supposing the axes to be fixved axes, let g,, g,, g. be the respective lengths of Q,, Q,, Q..
Then it is evident that, as the direction of Q, does not vary, D,(Q,) is a line whose

and

direction is that of Q, or Oz, and whose length is %qt—”; and similarly, D}(Q,) is a line whose

direction is that of Oz, and whose magnitude is ‘{:iq;’ Similar results hold good for
352
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D(Q,), D¥(Q,), &c. Therefore the two equations (I.) and (II.) evidently show that the

components of D(Q) and D}(Q) parallel to Oz are respectively equal to i’ and dtq;

11. Tt is easy to apply the above results to the velocity and acceleratlon of a particle.
For let Q in the last section stand for the radius vector of a moving particle, then the
components of the radius vector are respectively equal to &, 7, and z; and since the
velocity is the complete differential coefficient, and the acceleration is the second complete
differential coefficient of the radius vector, it follows from the last section that the com-
ponents parallel to Oz of the velocity and of the acceleration are respectively equal to

d. . .
d“: and dtg So that if v,, v,, v, be the components of the velocity, and f,, f,, /. be the

components of the acceleration, we have the elementary formule

dz d J
v,=5, and similarly v,= dz’ @zzd_'j;

fo= d ZQ, and similarly f,= dtga f dﬂ

12. Our next proposition will arise from investigating the complete differential coeffi-
cient of a line Q, which varies both in magnitude and direction with the time ¢.
Let Q at time ¢ be the line O A, and let it become O B at time
t-4At, so that we have —7
A(Q)=(0B)—(0OA)=AB. /}
Produce OA to C, making OC=O0B, and draw BC. Let OA
and OB have for their respective lengths ¢ and ¢4 Ag, and let angle BO A=e.
Then

A(Q)=AB=(AC)+(CB).
Therefore, by Lemma II. of section 6,

A(@)_(AC\ , (CB
—&—_ <Kt‘"> + (E‘) o e . o ° . ° . . . . (I.)
Now diminish A?¢ indefinitely and take the limit of the last equation. The limit of

5‘—2“? is D(Q), the complete differential coefficient of Q. The limit of % is evidently

a line whose length is the limit of 1—:—(3, or %qt, and whose direction is that of OA or of Q.
Finally, since COB is an isosceles triangle, %1—3— has for its limit a line whose length is

OA limit of %t’ and whose direction is perpendicular to OA or Q, and in the plane in
which Q is moving at time ¢; and if = be the rate at which the direction of Q is varying

at time ¢, w=limit of 7:‘7 Therefore, taking the limit of equation (I.), we obtain

D(Q)=(5 I to Q) +(g=L"t0 @),
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the latter line (¢w | * to Q) being in the plane in which Q is moving at time#¢. This is
the fundamental proposition concerning the differential coefficient of a line, and may be
stated in the following form :—

The complete differential coefficient of a line Q, whose length is Q and whose direction
is at time t varying with an angular velocity =, is the complete sum or is compounded of

two lines, one being ?l% in the direction of Q, and the other being qw in o direction perpen-

dicular to Q and in the plane in which Q is moving at time t. The former of these two
lines would evidently be the complete differential coefficient of Q, if the length of Q only
varied, and the latter would be its complete differential coefficient if the direction of Q
only varied ; and in this sense it may therefore be said that the complete differential
coefficient of a line is the complete sum of the two partial differential coefficients obtained
by varying separately the length and the direction of Q. One of these partial differential
coefficients may be called the length-differential coefficient, and the other the direction-
differential coefficient of Q, and the complete sum of these two constitutes the complete
differential coefficient of Q.

13. Let Q in the preceding section stand for the velocity of a moving particle. Then
D(Q) will be the particle’s acceleration, ¢ will be the velocity », and the direction of Q
will be that of the tangent to the particle’s path. Finally, wdf will be the angle between

two consecutive tangents, so that wdt:%, ds being an element of the particle’s path,
and ¢ the absolute radius of curvature. Therefore w:lg Py It follows then at once
from the last section, that D,(Q), the particle’s acceleration, is compounded of %—Z along the

2
tangent, and vw or %— perpendicular to the tangent and in the plane in which the radius

vector is moving at time ¢. In other words, the resolved part of the acceleration along

. dv d? . )
the tangent is B—zz 3—;, and the resolved part along the absolute radius of curvature is Z,

14. The same fundamental proposition of section 12 enables us to investigate D3(Q),
the second complete differential coefficient of a line Q, if we suppose that line to move
always in the same plane. 'We have, namely,

di
D(Q)=(% Il to Q) +(wg " to Q)
Now, in order to find D}(Q), we must ascertain the cbmplete differential coefficients of

(% | to Q) and of (wg | *to Q). The complete differential coefficient of the former line

<% | to Q) is, by section 12,

(fg—g | to Q) +w(§% 17to Q).
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Again, the complete differential coefficient of the line (¢= |*to Q) is similarly the
complete sum of the line (gt (¢w) 1" to Q> and of a line whose length is ¢w® and whose

direction is perpendicular to the line (¢= |*to Q), and whose direction is therefore
evidently opposite to that of Q. Hence D} Q) is the complete sum of

(%jg | to Q) and (w%% 1" to Q) and <d£t (qw) L7 to Q) and (—¢=* || to Q).
Therefore
D@={(F ") I oA} +{( o+ (am)) L0 Q-
In other words, the components of D%Q) parallel and perpendicular to Q are respect-
ively

42 d
e and gt (g=).

15. This last result may be easily applied to the dynamics of a particle. For, let Q
stand for the radius vector of a particle moving in a given plane. Let that radius vector
have 7 for its length and = for its angular velocity; then, since the acceleration equals
the second differential coefficient of the radius vector, it follows at once from the last
section, that the components of the acceleration parallel and perpendicular to the radius

vector are respectively

d%r

—a—r=" and M—I—% (rw), or % %‘ (=)

16. This last result is, however, but a particular instance of the connexion which
exists between the actual motion of a particle, and -its motion relatively to axes which
move in the same plane as the particle moves. It will be found that that connexion
may be easily deduced from the solution of the following problem :—

“ Supposing the axes of coordinates Oz and Oy to move about O in the plane of zy
with an angular velocity = at time ¢, it is required to find the complete differential coeffi-
cient of a line Q which moves in that plane, the lengths of Q’s components along the
moving axes being given.”

Let Q have for its components Q, and Q,, and let the respective lengths of these be
¢, and ¢,. Then, by Lemma IIIL of section 6, we have

Q=(Q.)+(Q,)-
D(Q)=D(Q.)+D(Q,).

Now since Q, and Q, vary in direction as well as magnitude, and since the angular
velocity of their change of direction is =, we have, by the fundamental proposition in
section 12,

‘Whence it follows that

D)= (% | to Ox'> +(wg. L to O),

(L)
D(Q)= (2 Il to Oy ) +(eg, L0 Oy).
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But since the lines (wg, |"to Oz) and (=g, | * to Oy) are respectively proportional and
perpendicular to Q, and Q,, and since the latter lines have Q for their complete sum, it
evidently follows that the former two lines have for their complete sum a line which is
perpendicular to Q, and whose length is =q.

Hence

D,(Q)=<% | t002)+ (% | t00y) +(mg L t0 Q). . . . (IL)

17. This last formula is true whether the axes be rectangular or oblique, and may be
made the basis of all the formulee of relative motion in one plane.
It may be observed that the line

dq, dq
— I toOx)—I— = I toOy)

is what would be the complete differential coefficient of Q if the coordinate axes were
fixed ; and it may therefore be called the complete differential coefficient relative to the
moving axes, or, more briefly, the relative differential coefficient of Q. So that the above
formula shows that the complete differential coefficient of Q is dts relative differential
coeffficient together with a line (wq 1*to Q), the latter line being drawn towards the direc-
tion in which the axes are revolving.

18. If the axes of coordinates be rectangular, then the line (wq, | *to Oz)is evidently
the same as (=g, || to Oy), and the line (=g, | * to Oy) is the same as (—w=g, || to Oz); and
therefore, looking at the equations (L.) in section 16, we see that

D{(Q)=D(Q.)+D(Q,)

dg, rdg
= ((T%.-—wgy | to Ow) + ((7;4-6% | to Oy) .
In other words, the components of D,(Q) parallel to Ox and Oy are respectively

U wg, and Dtog. . . . . . . . . (IIL)

The same result may be also deduced from formula (II.) in the same section, if we
resolve the line (=g | “to Q) along the rectangular axes of # and y.

19. Let us apply the above formule first to the velocity of a particle.

Suppose, then, a particle to move in a given plane, and that the rectangular axes of
coordinates in that plane revolve about the origin with an angular velocity = at time .
Let v, and v, be the components of the particle’s velocity along the moving axes. Then,
since the velocity is the complete differential coefficient of the radius vector, and since
x and y are the components of that radius vector, it follows from the formulee (IIL.) of
the last section, that

_d.z’
’Uw'—d_t_yw9

dy
Uy=7t+xw'
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. . dx
If the radius vector be chosen as axis of &, then #=r, y=0; therefore V= along

the radius vector, »,—r= perpendicular to the radius vector, where = is the angular
velocity of the radius vector.

20. Let us now apply the same formulee (III.) of section 18 to the acceleration of a
particle. Let v, and v,, as before, denote the components of the velocity, and let £, and f;,
denote the components of the acceleration of the particle. Then, since the acceleration
is the complete differential coefficient of the velocity which has v,, v, for its components,
it follows at once from the formulee (IIL), that

dv,
f;z—d-[—-vym',
dv

f;:—# “+v,w.
Suppose now the axis of 2 to be the radius vector, then we have already shown that

v,,:‘é—i, v,=rw. Therefore by substituting these values in the last formule, we see that

. . . d? .
J.» the acceleration along the radius vector, is Et—z-—-ﬂ"wz, and f,, the acceleration perpen-

d

dicular to the radius vector, is %(Tw)—l—w Zl;:%d_i (wr?), which is the same result as was

obtained in section 19.
21. Returning to the more general case, we have, as before,

_dv, .
ﬁ/—-dz‘ +’v.z'm ’
| . | d
and substituting in these the values already obtained for v, and v, namely, _—yw,

%{-ww, we find
dy

A2z . dos
f;"—“W—Z U r—1Y ar’

d%  dz dos (V)
f;:d?-l-z Ezm'-——w@—l-af a0

which are the formule for the components of the acceleration in terms of the coordinates
of the particle.

22. The last formuleae (IV.) may also be obtained in the following manner.

Let Q, and Q, represent respectively the components of the radius vector Q along the
axes of # and y. Then

Q=(Q.)+(Q,)-
Therefore

D(Q)=D¥Q,)+DXQ,).
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But since the axes of # and y revolve at time ¢ with an angular velocity =, and since
Q, and Q, have z and y for their respective lengths, it follows from section 14, that

DY(Q,)= {( e oa ) I to Ox}+{§d—‘j (¢*w) 1" to Ox},

and that
Di(Q,)= {(dﬁ )Il toOy} { 7 (4'=) L to 03/}

‘Whence it is easy to see that the components of D}(Q), or of the particle’s acceleration,
are
d’z 1d )
f=gp—20"—, 5 (=9"),
d@ (V)
Jr=g— 2‘|’ »dl (""x2)

which equations are clearly the same as those obtained in the preceding section.

‘We shall soon prove similar formule for the more general case of a particle and axes
of coordinates moving in any manner whatsoever in space of three dimensions, and
therefore, in order to prevent needless repetition, we shall postpone the further discussion
and complete interpretation of the equations (IV.) or (V.).

23. It is, however, interesting here to observe that all the results already obtained may
be readily deduced from the principles of what Professor DE MoRrGAN has called “Double
Algebra.” According to those principles, namely, the radius vector R whose length is
r and whose inclination to a fixed line is ¢, is symbolically represented by ¢’ Y=, so that

we have
R=re V-1,

— [di d
D,(R)=#"" (F’;Jrrm/q) ;

and the last expression represents the complete sum of

(‘% | to R) and (rgl% 1'to R) .
This result is the same as that arrived at in section 12.
Again, Dz(R)=D,,(Dt(R))=

(""\/ ldl(dt +dt\/ 1( —:I))

— (B @ dr di\\ |
=V (dﬂ —rg v/~ 1(dt( )+7t27t)’

and this expression represents the complete sum of a line

Therefore

& i do\ | drd)
To—rt [ toR and a lime 7 () +5 g L to R

This result is the same as that arrived at in section 14.
MDCCCLXII. 3T
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Finally, in order to obtain the formulee for relative motion, we have merely to put

(0 2) N
R=peltaa V-1,

where 4 is the angle made by R with the moving axis of #, and « is the angle made by
that moving axis with a fixed line. It follows then that

=4 = d — —
Dt(R)zga V_IEZ (7.5 v_l>+r£ \/_1 g0+ VI

Now it is evident that ¢* V_—IZZ%‘ (e ¥ =) represents the relative differential coefficient of

—_— = . d: s
R, and 7‘% N/ —1¢@9V=T yepresents a line 7'70; 1*to R. We thus obtain the same

result as in section 16.
By differentiating again it would also be easy to deduce the result of section 20, if we

— d? — . . .
observe that ¢* V=1 e (7'2" v “) represents the particle’s relative acceleration whose com-

Pz d%
ponents are Zz and _5-

CuaprrERr I1.

24. In order to extend the formule which we have proved for the motion of a particle
in one plane to the motion of a particle in space, it will be found very convenient to
make use of a conception which presents itself in statics, as soon as the equilibrium of
a solid body is treated of in that science.

Let O A and O B be any two straight lines drawn from the origin O.
If then O A represent a force P, and if we apply at B a force —P, we
shall obtain @ couple. Let O C be the awis of that couple. We know
then from statics that,if O A and O B have for their projections on the
axes of coordinates X, Y, Z and «, g, 2, then O C has for its projections

2Y—yZ, aZi—:zX, yX—2Y. . . . . . . . . . . (L)

Now the relation which the line O C bears to the lines O A and OB is one which not
only presents itself in statics, but which also plays a very important part in the differ-
entiation of lines, and in the dynamics both of a particle and of a body. For this reason
it will be proper to treat of the relation in question quite independently of statical
considerations; and since the expressions (I.), which are the projections of O C, are evi-
dently what are called deferminants, I shall call the line O C ¢he determinant of O B fo
OA.

Hence we have the following definition :—

“The determinant of a line Q to a line P is a line which is equal to twice the area of
the triangle of which the lines P and Q drawn from the origin are sides, and which is
perpendicular to that area, and the line is moreover drawn in such a direction that, to
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an eye looking along it towards the origin, the revolution of Q towards P appears to be
a revolution in the positive direction.”
The determinant of Q to P may be briefly denoted by
det (Q, P).
It is evident from the above definition, that the determinant of Q to P is a line equal
and opposite to the determinant of P to Q.
Moreover, if the projections of P on the axes of coordinates be p,, p,, p., and those of

Q be ¢,, ¢,, ¢, then it follows from the formule (I.), that the determinant of Q to P or
det (Q, P) has for its projections

PGPy GG PGP - - - - - - - (L)

25. The connexion which exists between the notion of a determinant of lines and the
elementary conceptions of dynamics may be easily made apparent. For suppose a
particle at the extremity B of O B to be revolving about the line O A with an angular
velocity represented in magnitude by O A, then if O C be drawn perpendicular to the
plane A O B, and equal to twice the area A OB, it is evident that O C will represent
the linear velocity of the particle. But O C is then by definition the same thing as the
determinant of O A to OB. Whence it follows that the determinant of O A to OB
represents the velocity of the point B, due to a rotation whose axis and angular velocity
are represented by O A.

This result, together with the result of the preceding section, may then be recapitulated
in the following manner. If V represent the velocity of a particle at the extremity of
the radius vector R, and the particle rotates about an axis which is represented by the
line Q, then, if the angular velocity is represented by the length of (2, we have

V=det (2, R).

Secondly, if P represent a force at the origin and R represent the radius vector at the
extremity of which a force —P acts, then the axis of the couple (P, —P) is det (P, R)
or det (R, —P); so that det (R, P) is what French writers call ¢ the moment-axis of a
force P with respect to the origin.”

26. Such, then, being the connexion between determinants and statical and dynamical
conceptions, I will proceed to prove some of the more important propositions concerning
the determinants of lines.

The most important theorem concerning the determinants of lines is the following :—
“If P, P, and Q be three straight lines drawn from the origin, then

det (P, Q)+det (P, Q)=det {(P)+4(P"), Q}.”

This proposition might be easily proved by geometry, but it is at once deducible from
statics. For, consider two couples having a common arm Q, and having forces P and P’
respectively acting at the extremity of Q at the origin O. The resultant of those two
couples will be a couple having the same arm Q, and having for its force acting at O the
resultant of P and P/, or (P)4-(P’). Now it is proved in statics that the axis of this

312
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resultant couple is the complete sum of the axes of two component couples. Therefore,
substituting for those axes the equivalent determinants, we see that the determinant of
(P)+(P') to Qis the complete sum of the determinant of P to Q, and of the deter-
minant of P’ to Q. Thus we have

det (P, Q)-+det (P, Q)=det {(P)+(P),Q}.. . . . . . . . (L)
And it may similarly be shown that
det (P, Q)—det (P’ Q)=det {(P)—(P"),Q}. . . . . . . . . (IL)

The same proposition follows also easily from a consideration of the linear expressions
(IL) in section 24 for the projections of a determinant, and is in fact equivalent to a
fundamental theorem concerning algebraic determinants, which theorem may be found
in SaLMON’S ¢ Lessons on Higher Algebra,” section 19, page 9.

27. The proposition proved in the last section will be found to be of constant use in
explaining and shortening analytical processesin mechanics. One useful application can
be made of it in proving *the parallelogram of angular velocities.” For taking Q to be
the radius vector of a particle, and P and P’ to represent two axes and angular velocities
of rotation then the formula (I.) of the last section translates itself at once by means of
section 25 into the following proposition :— The linear velocity of a particle due to a
rotation whose axis and angular velocity are represented by the line P, compounded
with the linear velocity due to a rotation similarly represented by the line P/, is equiva-
lent to the linear velocity due to a rotation represented by the complete sum of P and
P.”  And this is evidently the same as the proposition called « the parallelogram of
angular velocities of rotation.”

28. Let us next investigate the complete differential coefficient of det (P, Q).

We will first premise that, if m be any numerical quantity, it follows evidently from
the definition of a determinant, that

det (mP, Q)=m det (P, Q)=det (P,mQ). . . . . . . . . (L)
Suppose now that P and Q after an interval of time AZ become respectively (P)+(AP),
(Q)4-(AQ), the sign + here denoting the complete sum. Then the complete increment
of det (P, Q) is

det (P+4+AP, Q+AQ)—det (P, Q)= } (IL)

det (P4AP, Q4+AQ)—det (P+AP, Q)+det (P4 AP, Q)—det (P, Q). '

But it follows from formula (I1.) of section 26, that

det (P+AP, Q4+AQ)—det (P+AP, Q)=det (P+AP, AQ);
and similarly,

det (P4 AP, Q)—det (P, Q)=det (AP, Q).
Substitute, then, these values in the above equation (IL.), and divide both sides by A¢ by
means of the above formula (I.), and finally let A¢ diminish without limit. We thus
obtain for the complete differential coefficient of det (P, Q)

det (P, D, (Q))+det (D(P), Q).
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We have therefore the equation
D.{det (P, Q)}=det {P, D,(Q)} +det {D(P), Q}.
The same equation may also be proved by considering the algebraical determinants

which represent the projections of det (P, Q); and it may in fact be easily deduced from
the following identical equation,

a dg. dq, " dp, dp,
7 (1:P— 0y p)= (moy—;,y”pz) + (qz i d—,;)‘

29. It may be here observed that the formule (I.) and (IL.) in section 26, and the
formulee(I.)and (II.) in section 28, show that there exists an intimate symbolical connexion
between det (P, Q) and the product P,Q. In fact the only difference between their
symbolical properties consists in P and Q not being commutative in the expression
det (P, Q), and being so in the expression for the product.

30. There is one more proposition which is often very useful in analytical dynamics.

Let it be required to find det (R, Q'), where Q' itself equals det (P, Q). Let the required
line det (R, Q') be denoted by U. Then, by the definition of a determinant, U is perpen-
dicular on R and on Q', which last line is itself perpendicular on the plane containing
P and Q. Hence it follows that U is perpendicular on R and in the plane containing
P and Q.

We have still to find the magnitude of U. For this purpose let the angle which R
makes with the plane containing P and Q be ¥, so that ¢ is the complement of the
angle between R and Q.

Moreover, let d be the angle between P and Q, and let the magnitudes of P, Q, Q/, R be
denoted by p, g, ¢', r respectively. Then, since U is det (R, Q'), it follows from the defini-

tion of a determinant, that the length of U equals r¢ sin <72£—\!/> or r¢' cos Y.  Simi-

larly, ¢'=pgsin . Hence the length of U equals pgr sin 4 cos .

There are two cases especially which frequently occur in dynamics, first, when R is
identical with Q, and secondly, when R is perpendicular on Q.
- Let us first take the case of R being identical with Q ; then ¥=0 and r=¢q. There-
fore the required determinant is a line in the plane containing P and Q, and perpendi-
cular on R or Q, and its length equals pg®sin 4.

If, moreover, Q is perpendicular on P, then the required determinant is in the

direction of P, and its length equals pg? since ﬂ_g. So that, if P is perpendicular on

Q, we see that det {Q, det (P, Q)} is a line pg® in the direction of P ; and therefore evi-
dently det {Q, det (Q, P)} is a line pg® opposite to P.

Let us now take the case of R being perpendicular on Q. Then it might be easily
proved by spherical trigonometry, that sin 4 cos ¢ equals the cosine of the angle between
R and P. But we will prove this by analysis, because in doing so we shall meet with
formulse which will be of use in the sequel.
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Let, then, the components of P, Q, Q', R parallel to any three axes of coordinates
be denoted by p., p,, p.» ¢ &ec., ¢, &c., 17, & Then, if we denote the components of
U=det (R, Q) by w,, u,, u,, we have, by section 24,

U=G = 5  + o . .. e (L)
and since Q'=det (P, Q), we have

’

9e=9Py= 1P
0= Ps>
0= 4P Py

Hence, substituting the values of ¢, and ¢, in (L), we get

Us=Pa( 9,7+ 1) —q w(pyry +p.r.).
Now by hypothesis R is perpendicular on Q ; hence
therefore 2k gyt =05
g1yt gr=—q0
Therefore
U= — (PP D).

But as ¢ and 7 denote the magnitudes of P and R, it is evident that

Pols Py, Fpar.=pr cos ,
where ¢ denotes the angle between P and B. Therefore

W,= —Prq, cos P.
Similarly

w, = —prq, cos @,

w,= —prg, cos @.
Therefore the line U of which w,, #,, u, are the components is a line in direction oppo-
site to Q, and whose length equals prq cos ¢, ¢ being the length of Q. Hence if R be
perpendicular on Q, then det (R, det (P, Q)) equals —pgr cos ¢ in the direction of Q.

It follows from the above proposition, that, if Q' or det (P, Q) represent a force or
acceleration which acts at the extremity of the radius vector R, and if Q be perpendicular
on R, then the moment-axis of that force or acceleration about the origin is —pgr cos ¢
in the direction of Q, and the moments of such force or acceleration about the coordi-
nate axes are respectively —pr cos ¢ ¢,, —prcos ¢ ¢,, —prcos p¢,; and as ¢ is the angle
between P and the radius vector R, pr cos p=ap,+yp,~+2p., if @, y, z be the coordinates
of the extremity of the radius vector.

Cuaprer IT1.

31. We are now in a condition to treat fully of the motion of a particle in space of
three dimensions; and it will be found that the propositions which have just been
proved concerning the determinants of lines, will enable us to show how all the results
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arrived at as to a particle’s motion in one plane may be extended to motion in space
generally.

32. Suppose Q to represent a line drawn from the origin, varying both in direction
and magnitude in any manner whatsoever, and let it be required to investigate D(Q) the
complete differential coefficient of Q.

Let the length of Q be ¢ at time ¢, and let the direction of Q be revolving at time ¢
about a line whose direction is that of the line represented by 2, and let the length of
Q be the angular velocity =, with which Q’s.direction is revolving at time .

It has been already shown in section 12 that D,(Q) is in all cases the complete sum
of the two partial differential coefficients which are obtained by varying separately the
length and direction of Q. Now the former partial differential coefficient is evidently

(g% | to Q), and the other partial differential coefficient is, by section 25, equal to
det (2, Q). Hence we have the following fundamental equation,

D,(Q):(jl—’g I toQ)v+det(Q,Q). e &

33. It is not difficult to deduce from the last equation the expression for D}(Q), the
second complete differential coefficient of Q. In order to find that expression we must
take the complete differential coefficient of each of the expressions of which the right-
hand member of equation (I.) is composed. For this purpose represent for a moment

the line <%gt | to Q) by Q,. Then it follows from the fundamental formula of the pre-

ceding section, that
D3(Q)=D4(Q,)+D; (det (2, Q).
Now the formula (I.) of the last section gives evidently

D/(Q,)= (g;;l I to Q1> Fdet (2, Q),

or
d% '
(W I to Q) Fdet (Q, Q,).
Moreover we have, according to section 28 of the preceding Chapter,

D, {det (Q, Q)} =det {D(Q), Q} +det {Q, D(Q)}.

D(Q)=(Q,)+det (2,Q),
it follows from section 26 of the preceding Chapter, that

det (Q, D(Q))=det (2, Q,)+det {Q, det (Q, Q)}.
Therefore, collecting the above results, we obtain

D}(Q)=D(Q,)+D,{det (2, Q)} =
(‘;lg% [| to Q) +2 det (Q, Q,)+det (D(Q), Q)+det {Q, det (2, Q)} .

But since
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The two last terms of this expression are evidently what would be D(Q) if
2
%l were zero, that is to say, if ‘Q did not vary in magnitude; and (‘0%—2 | to Q) is evi-

dently what D}(Q) would be if Q did not vary in direction ; so that we have the
following proposition :—

“D;(Q) is the complete sum of the two partial second differential coefficients obtained
by varying separately the length and the direction of Q, together with 2 det(Q, Q,),

where Q, is the line (Z—tq | to Q) R
34. Suppose Q to be R the radius vector of a moving particle, the length of which
radius vector is 7, then D}(Q) is the particle’s acceleration; Q, is (% | to R), and

is therefore the velocity along the radius vector. If, then, we denote this by R,, the
equation arrived at in the last section shows that the acceleration is compounded of

(j—:—” | to R) 4+2det (Q, Ry),

and of what would be the particle’s acceleration if R did not vary in magnitude, that is
to say, if the particle simply revolved about the origin. And this latter acceleration is
again compounded of det (D(Q), R) and det {Q, det (2, R)}. The last line is, by section
30, a line drawn from the extremity of R, or from the particle, perpendicular to and
towards Q, and whose magnitude is @°p, p being the length of that perpendicular.

85. The above result is, however, but a particular instance of the theory of the motion
of a particle relatively to axes which revolve about the origin, a subject which we are now
in a condition to treat of very simply in its utmost generality. That theory will be found
to depend upon the solution of the following problem :—

“ Supposing the axes of coordinates Oz, Oy, Oz to revolve round the origin O about
an axis Q at time ¢ with angular velocity = (which is the length of Q), it is required to
find the complete differential coefficient of a line Q, the components of Q along the
coordinate axes being given.”

Let Q have for its components Q,, Q,, Q,, and let the respective lengths of these be
¢ ¢y ¢~ Then evidently

Q=(Qu)+(Q)+(Q.)
Dt(Q) = Dt(Q:c) + Dt(ny) + Dt(QZ) :

But, by the fundamental formula of section 32, we have

D(Q,)= (‘zi I[to Om) tdet(Q, Q,),

Therefore

D)= ("% iIto Oy) +det (2,Q,),

D(Q,)= ( % | to Oz) +det (2, Q,).
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Now we know, from section 26 of Chapter II., that

det (Q, Q,)+det (2, Q,)+det (2,Q,)
=det{Q, (Q,)+(Q,)+(Q.)}
=det ( Q, Q).
Therefore

D(Q)= ( 9z 1 4o Ox) (‘—f}f’ I to Oy) + (2% I to Oz) +det (2, Q).

This formula is true whether the axes be rectangular or oblique, and may be made
the basis of all the formule of relative motion.
It may be observed that, if the coordinate axes did not move, D,(Q) would be equiva-

lent to
(dqw I toOx) <%y I to 0?) + (dﬁqf I too”) ‘

So that the line represented by the last expression may be called the differential coeffi-
cient of Q relatively to the moving axis, or, more briefly, the relative differential coefficient
of Q. The above formula of the last section therefore shows that ¢he complete differential
coefficient of Q is the relative differential coefficient of Q together with det (2, Q).
This proposition exactly corresponds with the proposition in section 17 of Chapter I.
86. Assuming now the axes of coordinates to be rectangular, we know, from formulee
(I1.) in section 24 of Chapter II., that det (2, Q) has for its components

q.#,—q,@, parallel to Ow,
q.w.—q.w, parallel to Oy,
q,#.— ¢, parallel to Oz.

Therefore it follows from the preceding section, that the components of D, (Q) are
dqq
?th_ +szy - gywz)

dg
'ZZ}Z + g:cwz - sz'm

dqz""% — 4.7y

These formulw are in fact simply the analytical expression of the fundamental propo-
sition in the preceding section, and correspond exactly to the formule in section 18 of
Chapter 1.

87. Let us now apply the above formule to dynamics, and first to the velocity of a
particle.

Suppose, then, a particle to move in space in any manner whatsoever, and suppose that
the rectangular axes of coordinates revolve about a line {2 at time # with angular velocity
@, @ being the length of Q. Let v,, v,, v, be the components of the particle’s velocity,
and w,, @,, =, the components of Q. Then, since the velocity is the complete differential
coeﬁicwnt of the radius vector R of the partlcle, and since &, y, z are the components of

MDCCCLXIL 3 U



486 MR. A. COHEN ON THE DIFFERENTIAL COEFFICIENTS
R, it follows at once from the formulee of the preceding section, that
dx
Vo= ‘2w, —yw,,

dah
v?:j; G+ 2w, — 2w,

dz
'uzzd—t—l—ywm—xw

These formulee simply express the fact, that the absolute velocity is equivalent to the
relative velocity together with det (2, R).

38. Let us next apply the formule to the acceleration of a particle. Let, as before,
U, ¥y, U, be the components of the particle’s velocity V, and let f,, f,, f. be the components
of the particle’s acceleration. Then, since the acceleration is the complete differential
coefficient of the velocity, of which v,, v,, v, are the components, it follows at once from
section 36, that

dv,
f =7 Vw5

dv
j_:/ = _Zi—;+ V@, — V@

dv,
Jo=g T~ vy,
If we substitute in the last equations the values obtained for v,, v, v, in the preceding
section, we obtain

. dwz
I —W+ dt +2<dt y dz‘w )-]—(’yw —w,)w -—(xw —zw,) w,,
and similar formulee for £, and f,.
These are the ordinary formule. It would not be difficult to deduce their real
meaning from their analytical form ; but it will be better first to prove the result of
such interpretation in a different and more direct manner.

39. We have already seen that, if V denote the particle’s absolute velocity, and R the

dz dy d. .
radius vector, and if V, denote the relative velocity which has df’ d‘?, dzt for its compo-

nents, then
V=V,+det (Q, R).

Let then I denote the particle’s absolute acceleration, and let F, denote the particle’s

d*z dPy d’z .
relative acceleration which has - T T IF for its components; then
F=D(V)=D(V,)+D,det(Q,R). . . . . . . (L)

Now it follows from the fundamental proposition in section 35, that
Dy(V,)=F,+det (Q, V,).
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Moreover we know from section 28, that
D, det (2, R)=det (D,(Q2), R)-4det (2, D(R)).
But since D(R)=V =V, +det (2, R), therefore
det (2, D(R))=det (2, V,)+det {Q, det (2, R)}.
Hence, collecting the above results, and substituting them in the equation (I1.), we
find ’
F=F,+2det (Q,V,)+det (D(Q2), R)+det{Q, det (2, R)}.

It may be observed as to this formula, that if V,=0, that is to say, if the particle had
no relative motion, and moved as if rigidly connected with the axes of coordinates, then -
the two first terms of the last equation would vanish ; and therefore its other two terms
are what the acceleration would be if the particle had no relative motion, and they
represent what may therefore be conveniently termed the particle’s system-acceleration.
French writers have given to this acceleration the name of “accélération d’entrainement;”
it is the acceleration of a point which is in the position of the moving particle, and
which is supposed to be rigidly connected with the system of moving axes, and I there-
fore propose to call it < system-acceleration.” Using then this expression, we have the
following proposition :— The acceleration of a particle is equivalent to its acceleration
relatively to a system of axes revolving about a fixed point, together with the system-
acceleration corresponding to the particle and together with an acceleration equal to
2 det (Q, V), V, being the particle’s relative velocity, and Q the axis about which the
system is revolving at time #.” Or, more briefly, a particle’s absolute acceleration equals
the complete sum of its relative acceleration and of its system-acceleration together with
2 det(Q, V,). Such is the brief expression of CorioLI’s beautiful and very useful pro-
position concerning relative motion.

40. We have just seen that the particle’s system-acceleratlon is compounded of
det (D(Q), R) and det {Q, det (2, R){. As regards the latter line, it is clear from
section 30 that it is in the direction of the line drawn from the particle perpendicular
to and towards the axis Q, and that its magnitude is =’p, p being the length of that per-
pendicular. It is therefore equal and opposite to what is usually called “ the centrifugal
force.”

As regards the other line det (D(Q), R), it is of course at once determined as soon as
D(Q) is known. Now if »,, ®,, w, be the components of Q, it follows from the funda-
mental proposition in section 35 that D(Q) is equivalent to

(% to 00) + (%2 1 to O ) + (%2  t0 Oz) +-det (@, )

But it is clear, from the very definition of a determinant, that det (2, Q) is zero.:

d'arm da',, dos, sl : .
T This is an important pro

position often used in the dynamics of a rigid body, and generally proved by means of

a good deal of analytical work. It is usually expressed in the following manner. If
3u2

Hence we see that the components of D(Q) are =*
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w,, @,, w; be the components of = along fixed axes, and »,, »,, =, be its components along

moving axes which coincide with the former at time ¢, then —1="7%, —2=""y “73=""¢,

It is evident that this amounts to saying that D,(Q) has dw“ dlz-’/ 4% for its components ;

and we have just seen how that proposition follows at once from the fundamental
theorem in section 35, and from the self-evident fact that D,(Q, Q)=0.

41. Recapitulating then the results of the two last sections, we see that a particle’s
system-acceleration is equivalent to det (D), R) minus the centrifugal force, and that
. the absolute acceleration of the particle is compounded of the relative acceleration of
the particle, its system-acceleration, and 2 det (2, V,), V, being the particle’s relative
velocity.

If we now look back on the analytical expressions obtained in section 38 for the com-
ponents of the absolute acceleration, it will be easy to see their full meaning. The
expression ZZQ is the component of the relative acceleration. The expression z = d y dt
is the component of det (D,(£2), R), since, as we have seen, D,(Q) has for its components

. d . .
The expression 2 (ziwy—%—;wz> is the component of 2 det (2, V), since V,

do, dw, dw,
de’ dt’ dt
do,, dwy dm‘z
e’ de? dt
metry, that the expression

has for its components Finally, it may be easily shown by analytical geo-

(yza'z - Zza'y)za'y _ (xwz—wa)wz
is the component of the line »° drawn from the point (2, %, z) on the line whose direc-
tion-cosines are proportional to w,, », w, p being the length of that perpendicular.
Hence it is manifest that the analytlcal formule in question merely express the proposi-
tion enunciated at the commencement of this section.

It may, finally, be observed that the above results might also have been easily deduced
from the formula in section 34 for the acceleration along the radius vector in exactly the
same manner as the corresponding analytical formule for the relative motion of a par-
ticle in one plane were deduced in section 22 from the formula for the acceleration of
the particle along the radius vector.

42. If the origin of coordinates also moves, it is evident that the particle’s actual
acceleration is the resultant of the acceleration of the origin and the acceleration rela-
tively to the origin. Hence substituting for the latter acceleration the expression
already found for it, it is easy to see that the particle’s actual acceleration is, as before,
the resultant of the relative acceleration, an acceleration represented by 2 det (2, V),
and the particle’s system-acceleration, but that the system-acceleration is now the
resultant of the acceleration of the origin, and of the system-acceleration relatively to
the origin, for which latter system-acceleration we have already obtained the expression.
Now in whatever way a system moves, the motion may be decomposed into a motion of
translation and a motion of rotation. Hence we see that a particle’s absolute accelera-
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tion is in all cases the resultant of the relative acceleration, the system-acceleration, and
an acceleration equal to 2 det(Q, V), where Q is the axis about which the system is
turning at the time, and V is the relative velocity of the particle.

This is the most general form of CorioLr’s theorem.

43. One of the most important illustrations of the theory of relative motion is the
motion of a heavy particle relatively to a system which revolves uniformly about a fixed
axis ; for this includes the case of a falling body and the pendulum, where the earth’s
motion is taken into account.

Suppose then a particle of mass m to have for its actual weight W', and for its appa-

rent weight W, so that a force —W would keep the particle in relative equilibrium or
i

apparently at rest. Then evidently (%‘:—) — <V—WZ) is equivalent to the particle’s system-
acceleration.
Let then the particle be acted on by a force P over and above the weight W', and let

the particle’s actual acceleration be F, its relative acceleration F,, its system-acceleration
F,. Then clearly
P w!
F=(u)+ ()

F=(F,)+(F,)+2 det (Q, V);

A 7
and we have just seen that the system-acceleration F,= <‘—Z—> - (YV—> Hence it follows

m
that

But by CorioLr’s theorem

: p W
(F,)+2 det (Q, V)= (7;)4. (—”;) R ¢ )
% is the apparent acceleration of gravity, and is generally denoted by g.

44. The above formula is quite general; but in most cases ¢ may be considered as
constant both in magnitude and direction, its direction being the vertical direction at the
point of reference or origin.

‘We have then the formula

Fl=(§>+(g)_2det(g,vl). ... .oan)

This simple formula enables us to solve easily all problems concerning the motion of
a heavy particle relatively to a spectator on the earth. The formula shows that the
relative acceleration is found, just as if the earth did not move, by substituting the
apparent for the actual force of gravity, and by adding on a force —2mdet (2, V,),
where V, is the particle’s apparent velocity.

45. Let us take the vertical downwards as axis of z; let the axis of # be the horizontal
line drawn from north to south, and let the axis of # be the horizontal line drawn from

west to east. Then the equation to the earth’s axis is evidently —c—a%= s_i%’ if A denote

the latitude of the spectator’s position.
Therefore w,=w cosA, »,=0, »,—w=sinA.
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Moreover we know that the components of det (£, V,) are

W esnY
GO Te—=—® Sm)‘?l—t’

dz dz dz dz
G %=\ SN A— 7 €08 7\)
dy dz

dy
0t o™ i Ty~ COS A PN

Let then the force P, which, besides gravity, acts on the particle, have for its
components X, Y, Z, then, as F,, the relative acceleration, has for its components
Pz A%y d%
arz a "d‘—t%
along the axes, that

it evidently follows from equation (II.) of the preceding section, by revolving

dx X . di

'JF=E+2USIH7\%)

dy Y dz dz

dtg‘ +2m(dtcos7\-—%s1n7\> b (ITL.)
4%z dy

EE@:;;I-_Q — 2@ cos A Ef

Y
c oy . de dy dz . .
On multiplying these equations by —, —, - respectively, and adding, we find

ded?x dydd dzd® Xde Ydy Zdz
@t d 3T G T T di o dt

This equation may also at once be deduced from the formula (IL.) if we resolve
along the direction of the particle’s relative motion, and observe that det (2, V,) is per-
pendicular on that direction which coincides with the direction of V,.

By integrating the last equation, we see that the equation of wvis vive applies to the
particle’s relative motion just as if the particle’s relative motion were its actual motion,
with this difference only, that for the actual force of gravity the apparent force of gravity
must be substituted.

If the particle be a free particle acted on byno forces but gravity, then X=0, Y=0,
7.=0, and the equations (III.) are linear, and are therefore easily integrated.

Moreover if v, be the relative velocity, the equation of vis vive gives '

v}=2¢(2—"), h being a constant.

46. If the particle be suspended by a string from a point fixed to the earth, then if
that point be taken as the origin, and X, Y, Z be the components of the string’s tension,
we evidently have Zy—Yz=0, Xz—Zr=0, Yo—Xy=0; and substituting those values in
the preceding equations (II1.), we shall obtain two independent equations, which, together
with the equation 2°4%*+z’=a constant, will determine the particle’s relative motion.
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But those resulting equations can be found far more simply and directly in the following
manner.
For this purpose let us revert to the fundamental formula

Flz(;E)-l-(g)-—Zdet(Q,V). R

Now section 30 of Chapter II. shows us how to find the moment-axis with respect to
the origin of det (Q, V). If, namely, = and v be the magnitudes of Q and V, and ¢ be
the angle between Q and the radius vector, then the moment-axis of det (2, V) is

—avr cos@. Therefore the moment about the axis of 2 of —2 det (2, V) is 2wr cos ¢ %—?;

and similarly, its moments about the axis of y and z are respectively 2= cos ¢ %‘1—; and

271 cos ¢ Bft Moreover, since ¢ is the angle between the radius vector and £, it is evident

that
w7 co8 p=w L} vyt s=a(xcosA+2 sin A),

A being the latitude of the origin.
Let us now take the moments of F; about the axes of coordinates, and equate them to
the moments of those components of F, which are given in the formula (I.).

P . . gy
The moments of _ about the axes are zero in this case of the pendulum. 'The

moments of ¢ about the axes of , y, and z are respectively gy, —ga, and 0; and the
moments of —2 det (Q, V) we have just found. Hence we obtain at once the following

three equations :—

d%  d* d i
”ﬁ_zzz%_—_ gy+2w7jt—(xcos?\+zsm7\),
Pz & d i
z'dig—ﬂﬁjzz:—gw-l—zwEZ‘(“”COS7\+'231H7\)= SR )
P d. ;
x%—mg= Zwﬁ(xcosx+zsm7\).

These are the three equations given in HANSENS elaborate ¢ Theorie der Pendel-
Bewegung,’ and which are generally obtained by means of very complicated analysis.

One simple equation can be deduced by means of the proposition contained in section
45 ; for the principle of vis viva gives

(”%) 2..|_ G%) ’ + (%i) 2=2‘q(z) +a constant.

Moreover a°43*-+2* is a constant, and these two equations, combined with any one of
the equations (II.), determine the particle’s motion.
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Cuaprrer 1V.

47. As soon as we pass from the statics or dynamics of a particle to the statics or
dynamics of a system of particles or of a rigid body, we find that two forces which are
equal and parallel to one another are not equivalent to one another, and that we have
to take into account the position as well as the magnitude and direction of a force.
Notwithstanding this, we are enabled by means of an elementary principle of statics to
confine our operation and our notation to lines passing through one and the same point.
For suppose a force P to act at a point m of a rigid body, and apply at the origin O two
equal and opposite forces P and —P, then P at m is equivalent to P at O and the couple
whose forces are P at m and —P at O. Let the aaxis of this couple be denoted by G ;
the couple, being completely determined by G, may be called the couple G. 1t is
extremely convenient to have a name for the line G, indicating briefly its connexion with
the force P at m, and I shall adopt that given to it by French writers*, and shall call G
the moment-axis about O of the force P at m.

It has been proved in section 25 of Chapter I, that the line G, being the axis of the
couple whose forces are —P at O and P at m, is equal to det (—P, R), where R is the
radius vector of the particle. Hence we have

G=det (—P, R)=det (R, P).

We thus see that the force P at m is completely represented and determined by the
two lines P and G drawn from the origin, G being the moment-axis with respect to the
origin of P at m, and being equal to det (R, P).

48. Suppose now that we have a system of forces P,, P,, &c. acting respectively at
points m,, m,, &c. of a rigid body. Then it is clear from statics that the given system
of forces is equivalent to a force P at the origin O and a couple whose axis is G, where
P is the complete sum of the forces P,, P,, &c. supposed to be collected at the origin,
and G is the complete sum of the moment-axes (G,, G,, &c.) (about the origin) of the
forces P, at m,, P, at m,, &c.

49. We will now apply the above considerations to dynamics. Since the acceleration
is the complete differential coefficient of the velocity, it is evident that the line which
represents the moving force of the particle is the complete differential coefficient of the
line which represents the particle’s momentum ; or, more briefly, the moving force is the
complete differential coefficient of the momentum.

Let now P represent the moving force, and U the momentum of a particle m, P and
U denoting straight lines; then, if we treat the moving force and momentum as if they
were statical forces, it is clear that P at m is equivalent to P at the origin O and a
couple G, where G is the moment-axis about O of P atm; and similarly, the momentum
U at m is equivalent to U at O and a couple of momenta whose axis is H, where H is
the moment-axis about O of U at m. We have just seen that P is the complete differ-
ential coefficient of U, and we will now prove that in like manner G is the complete

* See DELAUNAY’s ¢ Mechanics,” page 254.
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differential coefficient of H. If, namely, R denotes the radius vector of the particle,
G=det (R, P), and similarly H=det (R, U). Now, if we differentiate the last equation,
‘H=det (R, U), we obtain, according to section 28,

D(H)=det(R,D,(U))+det (D(R),T). . . . . . . . (L)
But D(R) is identical with the particle’s velocity, and is therefore in the direction of
the momentum U. Whence it follows, from the very definition of a determinant, that

det (D(R), U)=0.
Therefore the above equation (I1.) becomes, since D(U)=P,
D,(H)=det (R, D(U))=det (R, P)=G.

This is an important result. It shows that the moment-axis about any point of the
moving force of a particle is the complete differential coeflicient of the momentum, and
that therefore the moment of the moving force about any line is the differential coefficient
of the moment of the momentum.

The above result may also be easily deduced from the identical equation

&Py d= d < dy dx>

oY E=a\"w Y &

50. The proposition which we have just proved may be easily extended to a system
of moving forces and momenta of the particles of a rigid body. For, according to section
43, the system of moving forces is reducible to a moving force at the origin O, and a
couple G. And the system of momenta may be similarly reduced to a momentum U,
and a momentum-couple whose axis is II. Now we have seen that P is the complete
sum of the moving forces, and that each moving force is the complete differential coeffi-
cient of the corresponding momentum. Jt therefore evidently follows that P is the
complete differential coefficient of the complete sum of the momenta, or of U. Hence
P=D,(U). Moreover we have seen that G is the complete sum of the moment-
axes about O of the moving forces, and that each of these moment-axes is the complete
differential coeflicient of the moment-axis of the corresponding momentum. Hence it
follows that G is the complete differential coeflicient of the complete sum of the moment-
axes of the momenta. Hence G=D,(H).

This result may be also easily proved by means of the identical equations

d’x d dx
Ay  dx\. d ‘dy  de
2m (ﬂfzﬁ—?/ W) =g 5m (25— 7.5)

51. The science of the dynamics of a rigid body is founded upon D’ALEMBERTS prin-
ciple, which asserts that the moving forces of a body’s particles are together statically
equivalent to the impressed forces acting on the body. If therefore these external forces
be reduced to a force P at the origin O and a couple G, then P and G are equal

MDCCOLXII. - 3x
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respectively to what was denoted in the preceding section by P and G; and we have
therefore

P=D,(U), G=D/H).
In other words, if we treat the momenta as statical forces, and reduce the system of
momenta of a body’s particles to a momentum U at O and a momentum-couple whose
axis is G, then the external forces acting on the body are equivalent to the force D(U)
at O and the couple of forces whose axis is D,(H).

Since G=D,(H), the resolved part of G along any fixed line will be the differential
coefficient of the resolved part of H along that line; or, in other words, the sum of the
moments of the external forces about any line equals the differential coefficient of the
sum of the moments of the momenta of the body’s particles.

The above results may be easily deduced from the ordinary equations

2 d.
%(X)=3 (m %) =§—i2 (m %), &e.,
d? a2 d d d
2(Zy-—-Yz)=Em<;ﬁ.§y——d7Zz) =72m (?tzty'fdl;z)’ &e.

But it will be generally found far better not to use those six equations at all, and
simply to bear in mind the fact which they alone express, namely, that P=D,(U),
G=D,(H).

52. It will be convenient to recapitulate once for all the notation and phraseology I
shall constantly use in the sequel. The system of momenta of a body’s particles, or
what may be called the body’s momenta-system, is reducible, if we treat the momenta as
forces, to a momentum at a point O, and a couple of momenta. The former I call Zhe
body’s momentum, and denote it by U; the latter I call the body’s momentum-couple about
0, and denote its axis by H. U and H may both be represented by straight lines
through the origin O. It is to be observed that U remains the same wherever O be
taken, but that H changes with the position of O.

The components of U and H along the axes of coordinates will be denoted by
U, U, U,, H,, H, H, respectively, the magnitudes of all these quantities being repre-
sented by the corresponding small letters. Thus A, will be equal to the resolved part of
H along the axis O, and will therefore equal the sum of the moments of the momenta
about Og. _

The system of moving forces is reducible to a moving force D(U) at O, and a couple
whose axis is D,(H); and it follows from D’ALEMBERT’S principle that, if the external
forces be reduced to a force P at O and a couple G, then

P=D,U), G=D,(H).

53. The next step will be to investigate the expressions for U and H.

In the first place, U can be easily found. For, let R denote the radius vector of a par-
ticle of mass m; then, if 3 denote the operation of taking the complete sum of lines, we have

U=2mD(R)
=D2(mR).



AND DETERMINANTS OF LINES. 495

Now, by a well-known proposition, it is evident that 3(mR)=MR, where M is the mass
of the body and R is the radius of the body’s centre of gravity. Hence

U=MD(R);

and therefore, if V denote the velocity of the centre of gravity in magnitude and direction,
U=MYV, or, in other words, U, the body’s momentum, is the momentum of the body’s mass
collected at the body's centre of gravity. '

54. In the next place we have to find H. The investigation will be very much
facilitated by the following consideration. A body’s motion is said to be compounded
of motions «, 3, ¥, if the velocity of each of the body’s particles may be considered as
the resultant of the respective velocities due to the motions of «, 8, y separately. In
such case the momentum of a particle will evidently be the resultant of the momenta
due to each of the motions «, 3, y separately; and since the resultant of the momenta
of all the particles will be the same in whatever way we group them together, it is
evident that we have the following proposition :—

“The resultant of the momenta of a body’s particles, or the body’s momenta-system, is
the resultant of the momenta-systems due to each of the motions «, 3, y.”

Thus a body’s motion may be decomposed into a motion of rotation and translation.
Hence the body’s momenta-system may be found by compounding the momenta-system
due to the motion of rotation with that due to the motion of translation.

Again, a motion of rotation may be decomposed into rotations about three axes.
Hence the momenta-system of a body which rotates about a fixed point is the resultant
of the momenta-systems respectively due to the separate motions of rotation about the
three axes.

55. Let us then first investigate H for a body having simply a motion of translation.

Let v be the velocity of translation in the direction of a line AB at time 7, then the
momentum of a particle of mass m is mv in the direction of AB. Hence the momenta-
systém consists of a number of momenta parallel to one another, and proportional to the
masses of the respective particles. Their resultant is therefore Mv at the centre of
gravity, M being the body’s mass. Hence the momenta-system is reducible to Mo at
the centre of gravity. Therefore H, the axis of the body’s momentum-couple about O,
is the moment-axis about O of M at the centre of gravity, and is zero, if the point O
coincides with the centre of gravity. In the latter case, since H=0, therefore D,(H)=0,
therefore G=0, or the moment of the external forces about any line through the centre
of gravity is zero for a body which has simply a motion of translation.

56. The next simplest case is that of a body rotating about a line. Take that line as
axis of z, and suppose the body of mass M to be revolving at time # about that line with
angular velocity =. It may be easily shown in the ordinary way, that the sum of the
moments of the momenta about the axes of «, ¥, z are respectively

—w3(maz), —w(myz), w(mr’).
3x2
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So that, using the notation of section 62, we have
h,=—wZ(maz), h=—w3(myz), h=oZ(mr*).
If the axis of z be a principal axis, we have

S(maz)=0, Z(myz)=0,
therefore ‘

h,=0, h,=0, h,=wZ(mr’);
and consequently H is a line in the direction of Oz, and equal to the product of = and
the moment of inertia about Oz.

57. If the axis about which the body rotates is neither a fixed line nor a principal
axis, it is more convenient to express H, the body’s momentum-couple, in the following
manner.

The body’s rotation about the point O may be considered as compounded of motions
of rotation about the principal axes at O. Let w,, w,, =, be the angular velocities of those
component rotations, and let A, B, C be the respective moments of inertia about the
principal axes. We have shown in the preceding section that the body’s momentum-
couples due to the three separate rotations about the principal axes would have for their
respective axes lines along the principal axes and equal to Aw,, Bw,, Cm,. It follows,
therefore, from section 54, that H, the body’s momentum-couple, is the resultant of the
three couples, whose axes are repectively Aw,, Bw,, Cw;. In other words, H, the axis of
the body’s momentum-couple, has Aw,, Bw,, Cw, for its components along the principal
axes. _

58. The results of the last two sections may be also proved in the following more
direct manner. '

Take any rectangular axes as axes of coordinates. Let =,, w,, @, be the cdmponents,
along those axes, of the body’s angular velocity of rotation. Let v,, v,, v, be the compo-
nents of the velocity of a particle of mass m, whose coordinates are #, g, .

If then A, h,, h, be the components of H, we have

h,=3m(yv,—2,).
But VN, =Yw,—rw, U,=00,—w,
Therefore h,=w 2m(y*+2*)— =, 3(myx) — =, Z(maz).

If, then, the moments of inertia about the axes of , g, z be denoted by A, B, C respect-
ively, and if we denote 2(myz) by A/, 3(maz) by B, Z(myz) by C, the last equation-
becomes

h,=Aw,—Cw,—B'w,;
and similarly, h,=Bw,—A'w,—C=,,
h,=Co,—Bw,—A'=,.

These results are true, whatever rectangular axes of coordinates be taken; but if they

be principal axes, then A'=0, B'=0, C'=0, and therefore we have, as before, -
h,=Aw,, h=DBw=, h=Cs,.
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59. We are now in a condition to solve easily the problem of the motion of a body
rotating about a fixed line, or about a fixed point under the action of any forces.

First, let us take the case of a body of mass M revolving about a fixed line. Take
that line as axis of z, and choose for the axes of & and y any lines fized in the body
which are perpendicular to one another and to Oz.

It was proved in section 52 that H, the axis of the body’s momentum-couple, has for
its components

h,=—w3(maz), h=—o2(myz), h=Mkws, . . . . . (L)
MZ#? standing for the moment of inertia about Oz.

Moreover we know from section 48 that U, the body’s momentum, is MYV, where V
is the velocity of the centre of gravity. Now if &, ¥, z be the coordinates of the centre
of gravity, V has evidently for its projections on O, Oy, Oz, —w=y, wx, 0 respectively.
Hence the components of U are equal to

w,=—Mwsy, u,=Mwz, »=0; . . . . . . . (IL)
knowing, then, the components of U and H, we can easily find the components of D(U)
and D(H). Using the notation of section 62, P=D,(U) and G=D,(H), and the com-
ponents of P and G may be denoted by P,, P,, P,, and G,, G,, G, respectively.

In the problem now before us, the axis of # does not move ; hence evidently

d d
Pz:?it(uz) and Gz:d_t(k”) e e e e e e e (III)

But as to the axes of z and g, they revolve about the axis of z with an angular velocity
= at time #.  Hence by the elementary formulé of section 18 in Chapter I., we have

Similarly,

P _dt(u) U, P_dt( )—|—uw
Il (IV.)

d d
=g (h)—hm, Cy=jy(h)+ho. |

Let, then, external forces acting on the body be reduced to a force at O whose compo-
nents are X, Y, Z, and to a couple the components of whose axis are I, M, N. Let
the reactions of the fixed axis be similarly reduced to a force whose components are
X’ Y', 7/, and to a couple the components of whose axis are I, M'. Then, by D’ALEM-
BERT’S principle,

X4X'=P,, &c.,
L4+1/=G, &ec
Therefore, substituting the values (I.) and (II.) in equations (III.) and (IV.), we obtain

the following six equations:—

XA+ X'=— My Mo,

Y+Y= Mzl —Ma7,
747= 0,
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do>
L4/ = —3(maz) o +o°3(myz),
do
M4+M'=—3(myz) T —w*2(maz),

dur
N= Mk T

These six equations are those ordinarily given in text-books, and their full import and
meaning is now apparent. The first three have for their right-hand members the com-
ponents of D(U), where U has for its components —M=y, M=z, 0.

The last three have for their right-hand members the components of D,(I), where
H has for its components —=3(maz), —w2(myz), Mk*=. And the six equations are at
once obtained by applying the elementary formule of section 18.

60. It is, however, in the solution of problems, far better to avoid using those six
equations, and simply to remember that the body’s momentum U is M=7 in the direction
of the velocity of the centre of gravity (7 being its distance from the axis), and that the
body’s momentum-couple H has for its components —w2(maz), —=>(myz), and Mi*w.
Then the complete differential coefficients of U and H can be found at once according to
the ordinary rules; and those complete differential coeflicients are by I’ALEMBERT’S
principle respectively identical with the force and the axis of the couple to which the
forces acting on the body may be reduced.

Take for example the following well-known problem :—

“ Under what circumstances will there be no pressure on the fixed axis, supposing no
external forces to act on the body*”

Since there are no external forces nor pressures which act on the body, it follows that
D,(U) and D(H) must each equal zero. Therefore U and H are lines of constant mag-
nitude and direction. Now the direction of U is that of the velocity of the centre of
gravity, and would therefore vary, unless the centre of gravity were at rest. Hence the
first condition is that the fixed axis passes through the centre of gravity.

Again, since H is a line of constant length and direction, its components along and
perpendicular to the fixed axis Oz must be lines of constant length and direction.
Hence h,=MZk*= must be constant. Therefore = is constant, or the body revolves with
uniform angular velocity.

Moreover the components of H perpendicularto Oz are b, = —w3(maz),h,= —w3(myz);
and we have just seen that the resultant of these two components must be a line of
constant length and direction. But as = is constant, it is clear that that resultant has
always the same components along the variable axes of # and », and would therefore
move with the latter, unless those components were always zero. Hence the second
condition is that Z(maz)=0, 3(myz)=0; in other words, the fixed axis must be a prin-
cipal axis. It is evident also that the two conditions are sufficient, for they make H and
U constant lines, and therefore they make D(H) and D,(U) vanish, and consequently,
by D’ALEMBERT’S principle, there are no forces acting on the body.
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61. We now come to the case of a body moving about a fixed point O. Let = be, at
time £, the angular velocity about the instantaneous axis, let A, B, C be the moments of
inertia about the principal axes at O, and let »,, »,, w, be the components of = along
these axes.

H, the axis of the body’s momentum-couple about O, has, we have already seen, for
its components

h,=Aw,, h=Bw, h=Cs.
If, then, we denote by Q the instantaneous axis, we know, from the fundamental propo-

sitions in sections 35 and 36, that D(H) is equlvalent to ¢ l] to Oz, dﬁ-” | to Oy,

d]l |[ to Oz, together with the determinant of Q to H, denotlng the instantaneous axis;

and moreover, that this determinant has for its components
hw,—hw., or (C—B)w,w, parallel to Oz;
hw,—hw,, or (A—C)w =, parallel to Oy;
hw,—hw®,, or (B—A)w,w, parallel to Oz.
Therefore the components of D,(H) are

A%} (C—B)aya,,
B dw-” —l—(A-—- Clow,,

C dwz-{—(B —A)w, @y

But by I’ ALeMBERT’S principle D(H) is the same as G, the axis of the couple result-
ing from the external forces. If, therefore, L, M, N be the components of G, L, M, N
must be respectively equal to the components of D(IH). Hence we have

L=A%"} (C—B)o,s.,
M=B%1+(A~C)w,m.,

N=C dwz-}-(B —A)o,w,

We thus see that these well-known equations of EvLER are found at once by resolving

D,(H) along the principal axes, where H is the axis of the bodys momentum-couple
and has Aw,, Bw,, Cw, for its components, and that they merely express the fact that G,
the resultant of L, M, N, is identical with D,(H).

62. The theory of the motion of a body about a fixed point can be more simply inves-
tigated, and the problems connected with that theory can generally be more easily solved,
by merely bearing in mind that G=D,(H) than by using EULER’S equations, which
merely express that fact in one particular form; for that form is not always the most
convenient form, and is in all cases apt to conceal the fact which it embodies.
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Take, for instance, the problem of a body rotating about a fixed point, no external
forces acting on it. Here D,(H)=0, therefore H is a line of constant length and direc-
tion. The motion of the body must therefore entirely depend upon the fact that, whilst
the body moves about the principal azes with angular velocities v, v, ®,, the line H, whose
projections on those axes are respectively Aw,, Bw,, Cw,, remains throughout the body’s
motion the same in magnitude and direction. ,

The length of H is evidently , /A’»,+4B*}+C*=>. But the length of II is constant,
say equal to A. Therefore

Aol Bo,4+-Col=r. . . . . . . . . (L)
Moreover, from section 35, we see that D(H) is equivalent to A%‘ | to O,
B‘%’ | to Oy, C ‘%ﬁ | to Oz, together with det (2, H); and since the last line det (2, H)

is perpendicular on the instantaneous axis Q, it follows that the resolved part of D,(H)
along the instantaneous axis equals

'wadm'x_l_ JBd'a'y_I_m'z dwz

But this must equal zero, since D,(IH) equals zero, and since consequently its resolved
part along any line is zero. Hence we have
doz, dw, o5,
ST "ddt =0.
Therefore

Aw’+Bw;+Cw; is constant, equal, say, to £% . . . . (IL)

‘We have already seen that H is a line of constant direction; and since its direction-
cosines are proportional to Aw,, Bw,, Cw,, it follows that the plane whose moment has
direction-cosines which are proportional to the last three quantities is a fixed plane.
This plane is the invariable plane. From this fact and the two equations (I.) and (IL.),
Poinsor’s celebrated illustration of the motion of a body which rotates about a fixed
point may be easily deduced in the ordinary manner; but it is unnecessary to discuss
the problem further, as it must be already sufficiently apparent that the body’s motion
entirely depends upon the fact that H is a line of fixed length and direction.

63. On looking at EuLER’s equations, we find that, when A=B=C, they take the
simple form '

A dwy,
L=A J

__ndw
M=B 7

(9
N=C i

Moreover, when only A=DB, then the third of EvuLer’s equations becomes N=C ‘%’

It may be interesting to trace the real meaning of these results.
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Let, as before, G be the resultant of L, M, N, and let H be the axis of the body’s
momentum-couple about the fixed point, and let Q represent the instantaneous axis.
Then G=D,(H), and D,(H) is equivalent to A ‘% [l to Oz, BE2+ |10 Oy, €% | to O,
together with det (2, H).

Now, if A=B=C, then H, which has for its components Aw,, Bw,, C=,, evidently coin-

cides in direction with Q, which has for its components »,, w,, w,. Therefore it follows,
from the very definition of a determinant, that det (2, H)=0. It is therefore because

det (Q, H)=0 when A=B=C, that the components of D,(IH) are simply A d;’, B d’“”

C JZ‘. and that EULER’S equations take so simple a form.
Secondly, suppose only A=B. It is evident, from what has been just said, that
N=C d;;‘+the resolved part along Oz of det (2, H). Now the equation to theline H is

R
Aw,” Bw, ™ Ca,

If then A=DB, the projection of II on the plane of 2y evidently coincides with the
projection of Q on that plane. Therefore the lines H, £, and the axis of z lie in the
same plane. Hence it follows that the line det (2, H), which by definition is perpendi-
cular on Q and on H, is also perpendicular on the axis of z, and has therefore no com-

ponent along that axis. We thus see that the reason why N=C a:%’, when A=, is

that in that case det (Q, H) is perpendicular to the axis of z. ’

64. In those cases in which there are more sets than one of principal axes at the fixed
point, it is sometimes convenient to take moments about a set of principal axes, which
are not fized in the body. v

There is no difficulty in applying the same method to such cases. Let =,, =, =, be
the angular velocities of the body about the principal axes Oz, Oy, Oz, and suppose those
axes not to move with the body as if rigidly connected with it, but to move at time # about
an instantaneous axis Q' with an angular velocity equal to the length of Q', and let the
components of Q' along the principal axes be =, =, =.. ‘

Let H, as before, represent the body’s momentum-couple. We have seen that H has
for its components

h,=As,, h=Bw, §L=Cs..

The1efore, acco1djng to the fundamental proposition in section 35, D(H) is equivalent
to (Aw )| to Oz, (Bw,,) [| to Oy, 7 (Cm )| to Oz, togetherw1th det({', H); and looking

at the formule of section 36, we see that det (Q’ "H) has for its components
Co,w,—Bw,=, parallel to Oz,
Aw o, —Cw ', parallel to Oy,
Bw,w,— Aw =, parallel to Oz.
MDCCCLXIL. 3y



602 MR. A. COHEN ON THE DIFFERENTIAL COEFFICIENTS

Therefore, if L be the moments of inertia of the forces about the prmmpal axes, we
have by D’ALEMBERT’S principle,

L= (Aw.)+ O, — B,
M= (Bo,)+ Aw,z,— Coa,

; N:-t% (Cw,)+Bw,w,—Av®,.

It is clear that, when there is more than one set of principal axes at the fixed point,
either all three or at least two of the quantities A, B, C must be equal to one another.
Suppose then A=B, then the axis of 2, Oz is fized in the body, and therefore =, and =,
are clearly the same as w, and w,. And the last equations, therefore, become

L=A%45(Ca,— As)),

M=A lj-l%”—}-wx(Aw;—sz),
_ (=,

N=C%:

, - d . .- .
If we put wzzwz—l—%, the above equations become the same as those which are given

in Rourn’s ¢ Dynamics,” page 134, where they are deduced from EULER’s equations.

65. To the above equations, however, the same remark applies as has already been
made with regard to EvLER'S equations. They merely express the fact that D,(H) has
L, M, N for its components; and it is far better in most problems to start with that
simple fact, and, without using those equations, to choose any axes which the nature of
the problem may suggest.

Take, for instance, the problem of the top spinning upon a per-
fectly rough plane.

Let O be the fixed point, ¢ the top’s centre of gravity. Take Og ¢
as axis of 2. Draw O ¢ vertically, and take as axis of z a line per-
pendicular to O # and in the plane 2O @, and take as axis of y a line
perpendicular on the plane z Oz, and therefore perpendicular on O g. x
The axes of coordinates are evidently principal axes. v

The components of II, which determines the body’s momentum-couple, are Aw,, Bw,,
Cw,, ®,, @,, @, being the angular velocities about the principal axes, and A being the
moment of 1nert1a about O # and about O g, and C being the moment of inertia about O ¢.
‘We have chosen O ¢ so as to be perpendicular on plane @ O #; consequently the resolved
part of H along O @ is the sum of the resolved parts of Aw,, Cw,, and equals therefore, if
we denote angle ¢ O z by 6, '

a =

g

— Aw, sin 4 Cw, cos 4.

Moreover, since O @ has a fixed direction, the differential coefficient of the last expres-
sion is evidently the resolved part along O« of D,(H). But this must equal zero by
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D’ALEMBERT’S principle, since there are no forces acting on the top which have any
moments about the vertical. Hence we have

4 (Ca.cosb—Amsinf)=0.. . . . . . . . (L)
Therefore
Cw, cos d— A, sin 4 is constant.
Moreover, since two of the principal moments of inertia are equal to one another, it
follows from section 58 that the sum of the moments of the external forces about Oz,

the axis of unequal moment of inertia, is equal to C ”-Z%“. Hence, as the forces have no

moment about Oz, we have C == dw”-— =0. Therefore =, is constant, This relation, together

with the equation (I.) and the equation of vis viva, solve the problem. We, namely,
obtain the three equations
Cw, cos §— Az, sin d=h,
T, =,
Awl 4 Aw)4-Cal=—2¢b cos 0+,
where b= Og, and ¢ is some constant.

66. In some few cases it may be convenient to take moments about lines which are
fixed in the body but which are not principal axes. Let then H have for its components
along the rectangular axes of coordinates 4, A, h, respectively, then we know, from
section 63, that ,

h,=Aw,~B'w,—C=, where Al=3(myz),

h,=B=z,— C=w,— A'm,, B'=3(maxz),
h,=Cz,— Alw,—DB'w,, C'=3(myx).
Therefore, if L, M, N be the moments of the forces about the axes, we have, as before,
d””+h @, ~hz
=Mt bz~ b,
dﬁ’-{-h @ —

If, on the other hand, the axes of Oz, Oy, Oz are not fixed in the body, but rotate with
an angular velocity whose components are =, ), =, then we have, in a similar manner,

””’w+k =, —ha, &c.

The above equations are somewhat more general than those given by LioUvILLE in:
his Journal of 1858, and are, as we have just seen, at once obtained by applying the
fundamental formulee of section 36.

67. I will now show how the principle of vis viva may be easily proved for a body

3v2
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moving about a fixed point without assuming the principle of virtual velocities, and is in
fact a very simple deduction from D’ALEMBERT’S principle. 3 ?

Let O ¢ be the instantaneous axis, about which the body is rotating o
at time ¢'with an angular velocity =. Letm be a particle of the body, =/
let its mass be m, its distance from O, r, and its velocity v in the
direction m n. 0

Suppose now a force P to act at m. Then, since mn is perpendicular on the plane
10 m, it is clear from statics that the moment of P about O¢ is the moment of the
resolved part of P along mn. It is therefore, if ¢ be the angle which the direction of P

makes‘with mn, equal to rP cos ¢, or EP oS Q.
Suppose then P to be the moving force of the particle m. Then its resolved part

. . d
along the velocity m n is of course m;ll;, so that P cos p=m %, and therefore the moment

. . d:
of the moving force about O ¢ equals mﬁ—i% Consequently the sum of the moments of

the moving forces about O ¢ equals %32 (mv %) But this sum, by D’ALEMBERT’S prin-
ciple, equals the sum of the moments of the external forces about O¢. Now we have
already seen that the moment of any force P about O ¢ is;—:_- P cos ¢, so that, if P represent
an external force acting on the body, the sum of the moments about O¢ of the forces

acting on the body equals éE(PU cos ¢). Hence we have

1 1 dv
—S(Pvcosg)=—-2 (mv 7;‘)
Therefore
= (mv?) =2{dt= (P cos p).
This equation embodies the principle of wvis vive; for it is evident that, if the compo-
nents of P be X, Y, Z, then

Pocosp=X 24y ¥4 7%

68. The same result may also be obtained by analysis; and it may be worth while to
notice that each step in the analytical proof is exactly equivalent to the corresponding
step in the above geometrical proof. This correspondence between the steps in analytical
and geometrical demonstrations is one of the most striking features of modern analytical
geometry, and would, as we have already attempted to show, present itself generally in
analytical mechanics, if more attention were paid to the interpretation of the equations
and formule which are employed.

The analytical proof is as follows :—

Let X, Y, Z be the components of any one of the forces acting on the body, and sup-
pose that force to act ata point (x, ¥, z) of mass m. Let ,, w,, =, be the angular velocities
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of rotation about the axes of coordinates, which are here supposed to be fixed in space.
Then it is clear that

dz dy %
a= rw,—Yw,, pry =rw,~Lw,, n= Y@ == Xy

Therefore
d: d; d.
S(XG+Y G2 7)
may be put into the form

>(Xz—Zo)w,+3(Yo—Xy)w,+3(Zy—Y2)o,. . . . . o« .« (L)
But, by D’ALEMBERT’S principle, v

2 2
S(Xe—Za)=3m (77 =72 ),

d? d?
2(Yz—Xy)=3m (Eii w—[—lz;f y) ,

d? d?
2(Zy—Yz)=Zm (;ﬁf-y-—;ﬁg z) .

Substituting these expressions in (L), we obtain
Pz & &y & &Pz &
w, =m (;ZZ—Q" Z—-dt—g w) +m‘, 27’}’&(2% T— a—tq y) +‘ZD",} Zm (dtg y—t—ﬁg z) )
which again can be put into the form

P a2 d?z
zm{ﬁ (2, =)+ g (20~ 20.) + Galy . — 19, }’

dPxdz  d¥ydy | d*zdz
=27n(zﬁ ataata az)
Hence it follows that
. dz dy dz\ APz de  d*ydy | d%zdz
= (X:zz+Y at7 dt) —Em(zmﬁd‘{e‘;zﬁmd—t)’
and therefore

s (5) + () + (%)) —ofda(X o4 Yy +7dz),

which is the equation of vis viva.

It may be observed that the same proof may be quite easily extended to a body moving
freely, by decomposing the original motion into a motion of translation with the velocity
of the centre of gravity and a rotation about the centre of gravity.

69. The two proofs which have just been given of the principle of vis viva are both
founded on the fact that the sum of the moments of the moving forces of the body’s

. . . 1 d 1d .
particles about the instantaneous axis is equal to Z b ('m/v Eg)’ or to 5= 7 2 (md*). This
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fact is the reason why the equations of vis viva can be obtained by multiplying EvLEr’s
three equations byw,, w,, =, respectively, and by adding together the products so
obtained ; for in performing those operations we are in reality finding the sum of the
moments of the forces about the instantaneous axis whose direction-cosines are
T Ty T
v’ e’

70. If G, be the sum of the moments of the impressed forces about the instantaneous
axis, then by D’ ALEMBERT’S principle G, equals the sum of the moments of the moving
forces about the instantaneous axis. Hence it follows from the preceding section that

G,= E(mvg)

1_‘7 dt
This equation is often useful.

For instance, since 3(mov?)=23(mw=*"?), where r is the distance of a particle from the
instantaneous axis, it follows that 3(mev*)=1I=* if I denote the body’s moment of inertia
about the instantaneous axis. Therefore

1d,,
Gy=7,7 (I=*)

dw | wdl
= di +2a’t

Now, if the instantaneous axis were fixed in space, we should evidently have
dw
G,=I 7

Therefore the only cases in which we can take moments about the instantaneous axis

. 1 . .
as if it were fixed in space are when g%:m or when the moment of inertia about the

instantaneous axis is constant. This proposition is useful in solving problems concerning
rolling cones, and is usually deduced by analysis from EULER’S equations.

71. T will give two more examples of the advantage of the method I have employed
in these pages.

Let »,, »,, w, be the angular velocities of rotation of a body about three rectangular
axes which are fixed in and move with the body, and let @, b, ¢ be the direction-cosines
with respect to those axes of a line which is fized in space. Take on the latter line a
point P at a unit of distance from the origin. The velocity of the fixed point P is zero.
Now, as its components along the moving axes are @, b, ¢ respectively, it. follows from one
of our elementary propositions that

d
Zl%+ cw,—bw,

equals the component of P’s velocity along Oz, and therefore equals zero.



AND DETERMINANTS OF LINES. 507

Hence

da
=050y,

a formula which is generally deduced as the result of somewhat long analytical work.
72. Secondly, in order to give a striking example of the manner in which the theory
of the determinants of lines explains and shortens analytical processes, I will give the
following direct proof of EULER’S equations.
Take the principal axes at the fixed point as the axes of coordinates. Let #,, v,, v, be

the components of the velocity V, and £, f,, . those of the acceleration F of a particle
(@, y, 2) of mass m.

We have seen that the fact of the acceleration being the complete differential coeffi-
cient of the velocity leads at once to the three following equations :—

v,

fw_ t-}-'vw —0,%,,

P ¢
dv,

f=gtvm.—vm,

Putting then for brevity’s sake f, for v,»,—v,2,, f, for vw,.—v.m,, [, for vw,—v,m,
we have

f=2etfl, )

d’l)y 2
fo= _|_fy, e e (2)
f dvz+fz-

Now the sum of the moments of the moving forces about Oz equals
o, o
Em(j;y-—f;z)=2m(;t y———y z) +=m(foy—f,2) -« « « (3)
Let us first investigate the expression Zm (-‘Zii‘ y—d”y z) Evidently

v, =yw,—rs,, and v,=zw,—5@,.

And as the axes meve with the body, «, y, z do not vary with the time, and we there-
fore obtain

dvz lo, dm-y dvz, dar, der,
y # T wmtam T a
Therefore

2 (‘Z’; y va Z) _d‘wa; zm(y _I_zz) 'ary 2(772.13‘2/)-— z(mwz)
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But as the axes of coordinate axes are principal axes, Z(may)=0, Z(marz)=0.
Therefore

Sm(dvz y"iny z) = 7 2m(y+27)=A — d’”’” e e e e (b))

A ubeing the moment of inertia about Og. ~
We have still to investigate the expression Zm(f.y—f,2) where f.=v,o,—v,,, and
fi=vm,—vw,
‘We obtain by substitution
2 fy—Fy2)=w2m(vy +v.2)— v, 2(mv,y) — o 2(mp.5)-
But since
V,=8w,— Y&,
V=0, —20,,
V,=Y@,— T,
it is evident that for principal axes we have

S(mu,y)=0, 2(mv.2)=0,
E(mmg/ ) —_— wzz(m?/ 2) ’ z(mvwz ) = wyz(mz 2)'

Sm(f.y—fy5)=wm(2(my’)—2(ms"))
=, (2m(y*+a*)—2m(z*+2?))
=w»,,(C—B),
where C and B are the moments of inertia about the axes of  and .

Substituting then this last expression and the expression in (4.) in equation (8.), we see
that the sum of the moments of the moving forces about Oz equals

Hence

A d”’”+(C —DB)w,w..

Hence by D’ALEMBERTY’S principle, if L, M, N be the sum of the moments of the
impressed forces about the axes of z, ¥, z, we have

L=A d’“’w+(c —B),5..
Similarly,
M=B df—’-”—{—(A—-C)wzwz,

N=C dﬁz—[—(B —A)o,w,

I will now show the full import of each of the steps in the above analytical proof.

We have seen, in section 39 of Chapter IIL., that the acceleration of the particle is
the result of the acceleration det (D,(Q), R), and the acceleration det (Q, V). If then
the particle’s mass be m, its moving force is represented by

mdet (D,(Q2), R)+m det (2, V).
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Now the above analytical proof merely shows that the sum of the moments about
the coordinate axes, of the moving forces of which m det (D,,R) is the type, are

respectively A ‘%, B ‘?_t_”, C ‘%ﬁ, and that the sum of the moments about the coordinate

axes of the moving forces of which » det (2, V) is the type are respectively (C—B)=,=,,
(A—=C)zm,, (B—A)w,m,.

73. I will next proceed to show how these results can be obtained far more briefly by
applying the propositions concerning the determinants of lines. In the first place, if we
put, for D,(Q), P, and suppose P to have for its components p,, p,, p. parallel to the axes,
then m det (D(Q), R) has for its components parallel to z and to y,

and therefore the moment of m det (D{Q), R) about the axis of @ equals

m {(ypw—mpy)y_(wpz_zpw)z} =m(zz +=72)Pw_my‘q’y—mmz‘p2'
Therefore, if we take the sum of these for all the particles and remember that the
axes are principal axes, that sum will equal p,Sm(z*4+y*). Now we have already

proved that p,, the component parallel to the axis of @ of D,(Q),:lg;;m.

that the sum of the moments about Oz of the moving forces of which m det (D,({2), R)

Hence we see

is the typeis A ‘%, and that this follows from the properties of principal axes, and from

the fact that the component of D(Q) parallel to the axis of & is d%

In the second place, we have already seen in section 30 of Chapter II. that the
moment about the axis of 2 of det (L, V) equals —r=v, cos ¢, v, being the component of
V, and ¢ the angle between the radius vector and V.

But —rav,cos @ equals evidently —o, (2w, +y=z,+2w,), and v, equals 2@, —yw, If
then we observe that Z(mav,)=0, Z(myv,)=—3(my)m,, 2(mav,)=2(mz*)=,, it follows
easily from the above that the sum of the moments about Oz of the moving forces, of
which m det (2, V) is the type, equals 3(m2*) =,w,— 3(my’) w@,—=(C—B)w,»,. This
last proposition may be also proved in a different manner, which will show its connexion
with the proof first given of EULER’S equations.

The moment-axis, with respect to the origin, of the acceleration det (2, V) is
det {R, det (2, V)}, which, as we see from section 30 of Chapter II., equals a line oppo-
site to V and of length =wvrcos ¢ ; but it follows from the same section that, since Q is
perpendicular on V, det {Q,det (R, V)} equals a line opposite to V and of length
wvrcos . Hence we have

det {R, det (2, V)}=det {Q, det (R, V)}.
Let then 3 denote the operation of taking the complete sum of lines. Then it follows
from the last equation that
Sm det{R, det (2, V)} ==m det{Q, det (R, V)}
=det({2, =m det (R, V)).
MDCCCLXIL 3z
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Now Sm det (R, V) equals the complete sum of the moment-axes of the momenta, or
is, in other words, the axis of the body’s momentum couple H whose components are
Aw,, Bw,, Cz,. Hence we see that

3mdet (R, det (2, V))=det (Q, H),
and therefore the sum of the moments about Oz of the moving force, of which

m det (2, V) is thé type, is the component parallel to z of det (Q, H), and equals
therefore Cw,@,— Bw,w,—=(C—B)=..



